Activity-dependent intracellular acidification correlates with the duration of seizure activity.
نویسندگان
چکیده
Synchronized neuronal activity (seizures) can appear in the presence or absence of synaptic transmission. Mechanisms of seizure initiation in each of these conditions have been studied, but relatively few studies have addressed seizure termination. In particular, how are seizures terminated in the absence of synaptic activity where there is no loss of excitatory drive or augmentation of inhibitory inputs? We have studied dynamic activity-dependent changes of intracellular pH in the absence of synaptic transmission using the fluorescent pH indicator carboxylseminaphthorhodafluo-1. During epileptiform activity we observed intracellular acidification, whereas between seizures the intracellular pH recovered. Experimental conditions that shortened the epileptiform discharge correlated with more rapid intracellular acidification. On the other hand, experimental manipulation of intracellular pH altered the duration of the seizure discharge, with acidification resulting in early termination of the epileptiform activity. These data show a direct relationship between the level of intracellular acidification and the duration of the seizures, suggesting that an intracellular pH-dependent process can terminate nonsynaptic neuronal synchronization.
منابع مشابه
اثرات دوگانه مرفین بر روی فعالیتهای صرعی خود بخودی در برشهای هیپوکامپ مغز موش
Background and Objective: Opiates have complex effects on seizure activity. They have both anti- and proconvulsive effects depending on experimental conditions. The aim of this study was to determine the effects of different doses of morphine and naloxon on spontaneous seizure activity in mouse brain hippocampal slices. Materials and Methods: Spontaneous epileptic activity in the brain slices o...
متن کاملModulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis.
To date, there is little experimental evidence supporting or refuting electrotonic interactions through gap junctions in the generation and/or spread of seizure activity in the mammalian brain. We have studied gap junctional mechanisms in the in vitro calcium-free induced model of epilepsy using electrophysiological and staining techniques in the CA1 area of the hippocampus. Lucifer yellow stai...
متن کاملDose-dependent effects of morphine on hippocampal seizure
Opiates have complex effects on seizure thresholds as these substances have both anti and proconvulsive actions in the mammalian brain. A reduction of inhibitory synaptic activity or enhancement of excitatory synaptic activity would be expected to trigger a seizure. This study is designed to determine how morphine and naloxone affect seizures induced by a low Mg2+ perfusate in the whole, intact...
متن کاملDose-dependent effects of morphine on hippocampal seizure
Opiates have complex effects on seizure thresholds as these substances have both anti and proconvulsive actions in the mammalian brain. A reduction of inhibitory synaptic activity or enhancement of excitatory synaptic activity would be expected to trigger a seizure. This study is designed to determine how morphine and naloxone affect seizures induced by a low Mg2+ perfusate in the whole, intact...
متن کاملCopper sulfate inhibits seizure activity induced by pentylenetetrazole in mice
Background and Objective: Copper is one of the main micronutrients of body which plays a key role as a cofactor in the function of metabolic enzymes. Previous studies have shown that copper sulfate () inhibits long-term potentiation (LTP) in slices of hippocampal CA1 region. Whereas LTP is involved in learning and epilepsy, it seems that copper effects on LTP could be associated with its effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2000